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Systems with spin-orbit coupling do not conserve “bare” spin current j. A recent proposal for a conserved
spin current J �J. Shi et al., Phys. Rev. Lett. 96, 076604 �2006�� does not flow persistently in equilibrium. We
suggest another conserved spin current J that may flow persistently in equilibrium. We give two arguments for
the instability of persistent current of the form J: one based on the equations of motions and another based on
a variational construction using Lieb-Schulz-Mattis twist operators. In the absence of spin-orbit coupling, the
three forms of spin current coincide.
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I. INTRODUCTION

Spintronics aims to manipulate the electron’s spin instead
of its charge.1–4 A requisite for spintronic devices is the gen-
eration of a spin current.5,6 In recent years, exciting new
proposals and predictions have been made regarding the pos-
sibility of dissipationless spin currents primarily through the
use of the spin Hall effect �SHE�.7,8 The SHE may generate
sizable Hall spin currents and open the door for the realiza-
tion of many of these notions. Observation of the SHE have
been reported by employing the Kerr effect in n-doped GaAs
�Ref. 9� and a p-n junction light-emitting diode system.10

Much fundamental work on spin currents has been carried
out, e.g., Refs. 11–16.

A fundamental problem in spintronics is the nonconserva-
tion of the bare spin currents �the sum of the product of each
electron spin multiplied by its velocity, see Eq. �3��. This
nonconservation is triggered by spin-orbit effects. Charge
conservation and the continuity equations that it gives rise to
are of crucial importance in electronic circuits. Is there an
analog for spins? The quest for conserved spin currents has
been the subject of much attention.17–19 An early step was
made in Ref. 17 that proposed a conserved spin current by
augmenting the bare spin currents by an additional contribu-
tion so as to include the effects of torques triggered by spin-
orbit effects. The work in Ref. 17 assumed that the average
torque vanishes in the bulk and that the “torque dipole den-
sity” on the system’s surface can also be neglected. The
torque dipole density was a field whose divergence led to the
actual torque acting on spins at a particular location. This
proposal was exciting. The spin-accumulation observations
in Refs. 9 and 10 indeed cannot measure the bare spin cur-
rent.

We suggest that the notions of conservation and of persis-
tence are independent of spin currents. For example, the bare
spin current in Eq. �3� in general is not conserved and may
persist in equilibrium �see Eq. �10��. Rashba noticed the pos-
sibility of persistent equilibrium flow of the bare spin current
for a particular class of spin-orbit coupled models.20 Here we
present a model-independent argument for the result. In con-
trast to the bare spin current, the conserved spin current J
given by Eq. �2� does not flow in energy eigenstates so any
persistent flow implies the system is not in equilibrium. Fur-

thermore, we have found another conserved spin current J
and associated spin density �̄ that may flow persistently.
When spin is a good quantum number, these distinctions col-
lapse: the bare spin current is conserved and none of the
three spin currents flow persistently. However, in a generic,
spin-orbit coupled system, the definitions of spin current dif-
fer with respect to their conservation and persistence.

In Sec. II, we recall the standard definition of spin density
and bare spin current. We then review the conserved spin
current proposed in Ref. 17 and contrast it with an alterna-
tive, conserved spin current �see Eq. �5��. Sec. III further
distinguishes this novel, conserved current by computing its
expectation in a general spin-orbit coupled system. We show
that, in contrast to the previous proposal, it may flow persis-
tently, just like the bare spin current. In Sec. IV we give a
physical argument to explain this distinction: any state that
carries the conserved spin current proposed in Ref. 17 may
dissipate energy by relaxing to a lower-energy state, which
we explicitly construct. The argument extends the one used
by Bohm to establish that persistent charge current flows
only in metastable states, not the ground state.21 Further, the
construction generalizes one used by Lieb et al.22 to study
quasi-one-dimensional, spin-1/2 systems. We conclude with
a summary and discussion of our results.

II. DEFINITIONS OF SPIN CURRENT AND SPIN
DENSITY

Let us consider a general, interacting system with Hamil-
tonian H��ri� , �pi� , �����. Here, �ri� and �pi� denote the
phase-space variables and ���� reflects the spin states of all
nonscalar particles in the system. The spin density along a
given quantization axis �taken to be the z axis� has the form

� = �
i

�i
zni, �1�

where ni is the particle density and �i
z is the spin operator

along the z axis, given by a Pauli matrix for spin one-half
particles. In Ref. 17, Shi et al. suggested the following form
for the spin current:

J =
d

dt��i

�i
zxi	 = j + �

i
�i

zxi, �2�

where the spin torque is given by �i
z=d�i

z /dt=1 / �i����i
z ,H�.

In the absence of spin-orbit coupling, the spin torque van-
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ishes and the spin current J coincides with the bare spin
current

j = �
i

�i
zvi, �3�

where the velocity is given by vi=dxi /dt=1 / �i���xi ,H�.
In contrast to the bare spin current Eq. �3�, the current in

Eq. �2� satisfies the continuity equation, even in systems with
spin-orbit coupling17

��

�t
+ � · J = 0. �4�

Physically this means that in a system with boundary, the
flow of spin current Eq. �2� across the boundary into the
system leads to spin accumulation within the system. We
note that conservation of J only occurs when the average
torque vanishes: �i
�i

z�=0.17

Interestingly, it is possible to construct another spin cur-
rent J and spin density �̄ that satisfy the continuity equation.
Consider the following spin current:

J = �
i

�i
z�t = 0�vi = j − �

i

�i
zxi + ¯ , �5�

where, the omitted terms are higher order in the
spin-orbit coupling. We define a corresponding spin density
�̄=�i�i

z�t=0�ni by evaluating at the same reference time. Re-
markably, this form of the spin density and spin current also
satisfies the continuity equation

� �̄

�t
+ � · J = 0. �6�

To see this, notice that the label �i
z�t=0� does not evolve but

merely labels each particle. From the continuity of charge,
the continuity of these labels follows. We remark that the
current J obeys the continuity Eq. �6� even when the average
torque does not vanish, in contrast to the current J. In the
Appendix, we perform the expansion in spin-orbit coupling
explicitly.

III. CONSTRAINTS ON SPIN CURRENT FROM
EQUATIONS OF MOTION

As noted in Ref. 17, the form of the spin current in Eq. �2�
does not flow in energy eigenstates. We give a simplified
derivation, then extend it to finite temperature, and use the
result to deduce constraints on equilibrium flow of the other
two forms of spin current Eqs. �3� and �5�.

The spin displacement operator

L = �
i

xi�i
z �7�

allows us to evaluate the spin current in Eq. �2�,


n�J�n� = 
n�
dL

dt
�n� = − i
n��L,H��n� = 0. �8�

Here, �n� denotes the nth eigenstate of H with energy En. The
second equality in Eq. �8� follows from the equations of
motion while the third follows as 
n� and �n� refer to the
same eigenstate of H with specific eigenvalue �En�. Here and
henceforth, we set �=1.

As an immediate corollary, we notice that the spin current
in Eq. �2� vanishes at finite temperatures as well


J� =
�n


n�J�n�e−�En

�n
e−�En

= 0, �9�

where, the inverse temperature is �=1 /kBT.
If we now invoke Eqs. �8� and �9�, we have the following

constraint on the bare spin current Eq. �3� in equilibrium:


j� = − �
i


�i
zxi� . �10�

This is so due to Eq. �9� and the relation between Eqs. �2�
and �3�. Similarly, the conserved current J may have a non-
vanishing expectation value even at equilibrium


J� = − 2�
i


�i
zxi� + ¯ , �11�

where the omitted terms are higher order in the spin-orbit
coupling. When spin is a good quantum number, all three
forms of the spin current vanish in equilibrium. Only in the
presence of spin-orbit coupling do the equilibrium currents
differ.

IV. VARIATIONAL PROOF USING THE LIEB-SCHULZ-
MATTIS TWIST OPERATOR

We now regress and derive a version of Eq. �8� for the
ground-state sector by a generalization of the variational ar-
guments in Ref. 21. This proof makes contact with topologi-
cal Lieb-Schulz-Mattis22 type twist operators.

We consider the ground state �0� of a general system with
spin-orbit coupling and prove by a variational argument that
within it the spin current vanishes


0�J�0� = 0, �12�
where, we take spin current J as in Eq. �2�. By definition, the
ground-state energy

E0  
0�H�0� �13�
is the lowest attainable energy and lies at the bottom of the
spectrum. Let us assume that we have a state ��� with a finite
�i.e., nonzero� spin current. We will then prove that ��� can-
not be the ground state, by constructing another state ����P��
with a lower energy. That is, if 
��J����0 then, the energy
E��P� of the “twisted” state ����P�� can be made to be lower
than the energy E�0� of ���, by choosing the variational pa-
rameter �P appropriately

E��P� 	 E�0� . �14�
In this way we establish that the ground state �0� cannot carry
a spin current of the form in Eq. �2� since, by definition, it
has the lowest energy.

We construct the variational state ����P�� by applying a
spin-dependent boost to the state ���

��� = exp�− i�P · L���� = exp�− i�P · �
i

xi�i
z	 , �15�

where we have used the spin-displacement operator L from
Eq. �7�. Compared to ���, the momentum of each particle in
����P�� with spin up �i

z=+S changes by +S�P while the
momentum of particles with spin down �i

z=−1 changes by
−S�P. The momentum boost �P will be our variational pa-
rameter. Lieb-Shulz-Mattis perform a similar construction
but restrict the system geometry to be quasi-one-dimensional
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and the spin S to be half integer.22 We require no such re-
strictions; the conclusion Eq. �12� holds in one, two, and
three dimensions, for systems with half-integer spin particles
as well as those containing integer spin particles.

The energy of ����P�� for small �P may be expanded


���P��H����P�� = 
��H��� − i�P · 
���H,�
i

�i
zxi����

+ O���P�2� . �16�
Now invoking the equation of motion 
dL /dt�= i
�H ,L�� and
the definition of the spin current J=dL /dt in Eq. �2� we have

E��P� = E�0� + �P · 
��J��� + O���P�2� . �17�
It follows that if the state ��� carries a spin current

��J����0 then there always exists a sufficiently small �P
such that E��P� can be made smaller than E�0�, by choosing
the direction of the momentum boost for spin-up particles �P
opposite to the current direction 
J�. Since the ground state
has the lowest energy, we must have Eq. �12�, a special case
of the more general Eq. �8�.

V. CONCLUSIONS AND DISCUSSION

In spin-orbit coupled systems, the definition of spin cur-
rent has inherent ambiguity.23 By redefining the current, it is
possible to change its properties. We consider three defini-
tions of the spin current that generically differ with respect to
the two properties that interest us most, continuity and per-
sistence. The bare spin current j defined in Eq. �3� may per-
sist in equilibrium but generally does not lead to spin accu-
mulation. The spin current J defined in Ref. 17 obeys the
conservation law Eq. �4� when the average torque vanishes.
However, the expectation 
n�J�n� vanishes in all energy
eigenstates �n� of a system with a time-independent Hamil-
tonian. A third definition Eq. �5� of the spin current J, obeys
a continuity equation with a modified spin density �̄ and may
flow persistently in equilibrium.

Expanding in powers of the spin-orbit coupling, we find
that J differs at leading order from both the bare spin current
j and the conserved current J in Ref. 17. This means that in
principle, the expectation value 
n�J�n� need not vanish and a
conserved spin current J may flow persistently even in equi-
librium despite spin-orbit coupling. We conclude that in gen-
eral spin-orbit coupled systems, no definite relation exists
among the concepts of persistence and conservation of spin
current.

We give a physical argument for the instability of persis-
tent spin current of the form J defined in Ref. 17. The argu-
ment makes contact with the Bloch’s famous result for the
instability of persistent charge currents. In passing, we note a
fundamental relation, summarized in Eq. �15�, between J the
spin current in Ref. 17 and the twist generator used by Lieb,
Schulz, and Mattis. It would be interesting to formulate this
relation in an SU�2� invariant fashion.

Several experiments bear directly on these issues.24–26

Transport measurements in HgTe quantum wells provide evi-
dence for gapless edge modes that are protected from non-
magnetic impurity scattering and that respond singularly to
an external magnetic field.25 This is consistent with a “heli-

cal” picture for the edge modes with a bare spin current j
accompanying the charge current. Spectroscopic measure-
ments of the surface excitations in Bi1−xSbx find an odd num-
ber of gapless Dirac points on the surface, suggesting topo-
logical stability of the gapless modes to nonmagnetic
impurities.26 Further, in GaAs/GaAlAs quantum wells, time-
resolved Kerr-rotation experiments see evidence for a long-
lived excitation mode that transports both spin and charge.24

These systems contain strong spin-orbit coupling, so the
bare spin current j accompanying the gapless charge modes
need not give rise to a spin accumulation. A detectable
change in spin density �, could arise in response to an ap-
plied bias due to the flow of the current J, provided that the
average torque density vanishes. For pure Rashba spin-orbit
coupling, nonmagnetic impurity scattering eliminates spin
accumulation even under an applied bias.15 The systems de-
scribed above are stable to nonmagnetic impurities, opening
up the possibility of detectable spin accumulation.
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APPENDIX: DERIVATION OF CONSERVED SPIN
CURRENT J

We begin by considering the conservation of charge cur-
rent. In the absence of spin-orbit coupling, this case also
describes spin. Charge conservation and gauge invariance are
tightly linked. To see this in the simplest context, we con-
sider a system with approximate d+1-dimensional Lorentz
invariance such as graphene �d=2� or bismuth �d=3� and
adopt the relativistic notation A
, where, A0=� is the scalar
potential and Aa for a=1,2 , . . .d are the components of the
vector potential. For convenience, we adopt the units
�=c=1.

Let us now suppose that the low-energy effective action
Seff�A
� is invariant under a transformation of the gauge field

A
 → A
 + �A
 = A
 − �
� �A1�
with ��x
� any smooth function. To see how this constrains
charge flow, we formally expand the low-energy effective
action in powers of the gauge field A
,

Seff�A
� =� ddxdtJc

A
 + ¯ , �A2�

where, the charge current is given formally by the functional
derivative Jc


=
�Seff�A
�

�A

. By definition of the charge current,

the gauge transformation Eq. �A1� leads to the following
change in the effective action:

�Seff =� ddxdtJc

�A
 =� ddxdt��
Jc


�� + ¯ , �A3�

where, we have integrated by parts in the second line and
dropped the contribution from the surface of the system.
Gauge invariance requires �Seff=0 for arbitrary, smooth �,
which can only be satisfied if the charge current is conserved
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�
Jc

 = 0. �A4�

Conversely, charge conservation Eq. �A4� implies invariance
of the effective action under the gauge transformation Eq.
�A1�. Thus, charge conservation and gauge invariance have
an intimate relationship.

To make contact with our results in Sec. II, let us express
this connection between gauge invariance and charge conser-
vation in the language of operators. For a system with time-
independent charges �ei� the charge-density operator is given
by

�c = �
i

eini �A5�

with ni as the number-density operator. If we now assume
gauge invariance and the usual Maxwell dynamics for the
gauge field, then we find charge is conserved at the operator
level,

��c

�t
+ � · Jc = 0 �A6�

with the charge-current operator given as follows:

Jc = �
i

eivi. �A7�

Here vi is the velocity of the ith charge carrier in the system.
For example, consider a single particle with mass m and

charge e in state ���. Symmetrizing Eq. �A7�, we find the
following familiar expression for the charge current �Here
a=1,2 , . . .d run over the spatial components�:


��Jc
a��� = e� ddx���� 1

2mi
Da�� − �� 1

2mi
Da���	

�A8�
with the spatial components of the covariant derivative given
by, Da= �

�xa − ieAa. The velocity operator is given by
v=D /m, and we see here that the operator expression �A7�
describes the usual charge current in Eq. �A8�.

Let us now apply this to spin systems. As the spin states
change with time, we obviously cannot simply substitute
ei→�i

z�t� in order to get a conserved current. If we set, how-
ever, ei→�i

z�t=0� then the steps above can be reproduced

word for word. Although, we will refer to spin currents in
what follows, our results hold for any other “charge” field �
which is allowed to vary in time. This is so as �z�0� the value
of the z component of the spin at time t=0 is, by definition,
time independent. We may relate �z�0� to �z�t� by a time-
reversed evolution,

�z�0� = e−i�0
t H�t��dt��z�t�ei�0

t H�t��dt�. �A9�
Here, ei�0

t H�t��dt� is a time-ordered exponential. The total num-
ber operator ni �the sum over both up- and down-spin fla-
vors� and its associated number current satisfies the continu-
ity Eq. �A7�, so the continuity equation for the spin current
Eq. �5� given by Eq. �6� follows.

It is interesting to formally expand the spin density �̄ in
powers of the spin-orbit coupling,

�̄ = �
i

�i
z�t = 0�ni = �

i

�i
z�t�ni − t�

i

d�i
z

dt
ni +

t2

2 �
i

d2�i
z

dt2 ni

−
t3

3!�i

d3�i
z

dt3 ni + ¯ . �A10�

To zeroth order, �̄ coincides with the bare spin density �.
However, already at leading order the two densities differ.

Turning now to the spin current, we can use the expres-
sion in Eq. �A7� to write down a corresponding conserved
spin current. Again it is interesting to formally expand the
expression in powers of the spin-orbit coupling,

J = �
i

�i
z�t = 0�vi = �

i

e−iHt�i
z�t�eiHtvi

= �
i

�i
zvi − t�

i

d�i

dt
vi +

t2

2 �
i

d2�i
z

dt2 vi

−
t3

3!�i

d3�i
z

dt3 vi + ¯ . �A11�

We find that to zeroth order in the spin-orbit coupling, J
coincides with the bare spin current j in Eq. �3� and the
conserved spin current J in Eq. �2�. At leading and higher
order, however, the three currents differ.
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